Shannon expansion is a technique used in Boolean algebra to represent a Boolean function in terms of its variables and their complements. It involves using the distributive property of Boolean algebra to break down a function into its constituent parts. This technique is useful for simplifying complex Boolean functions and for designing digital circuits. Shannon expansion can be performed using either the sum-of-products or the product-of-sums form. In the sum-of-products form, the function is represented as a sum of products of variables and their complements, while in the product-of-sums form, the function is represented as a product of sums of variables and their complements. Shannon expansion is named after Claude Shannon, who first introduced this technique in his seminal paper "A Symbolic Analysis of Relay and Switching Circuits" in 1938.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page